If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x=139
We move all terms to the left:
2x^2+x-(139)=0
a = 2; b = 1; c = -139;
Δ = b2-4ac
Δ = 12-4·2·(-139)
Δ = 1113
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1113}}{2*2}=\frac{-1-\sqrt{1113}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1113}}{2*2}=\frac{-1+\sqrt{1113}}{4} $
| M-6=-6+6m | | 6/1.5b+6/b=1 | | 3602+18c=0 | | 3v+4=6+v-5+13 | | 2(2x+1)-3x=7 | | -10+3(-2x+2)=−8(−7x+7)+5 | | g(1)=-2(1)-3 | | 1.5b^2+15b=0 | | 3×m=12m= | | 5-12x=6x-17 | | 0.75=x/(1-x) | | 0.6x+14.4=-0.8x+48 | | 6-4a-4=18 | | g(0)=-2(0)-3 | | 4x-5x+2x=-1-3-4 | | -(4+m)+2m=−(4+m)+2 | | -x-2.9(-3x-7)+5=(-4.9x+4.8) | | g(-1)=-2(-1)-3 | | 6(3x+2)=4(4x+10) | | 9x+37=135 | | -3y-2-3=-4y-6 | | 2(11x+5)=4(4x+10) | | x(x-4)^3=0x | | 3+x=39–2x | | 3t-5=26 | | x+6−5=x+114 | | x+3-3x=2x-6+1 | | 5(2x+4)+3(2x+4)=80 | | 2x-3=6x+1-8x | | 5(2x+4)+3(4x+8)=66 | | x(x-4)^3=0 | | 12+26p=210 |